Kennesaw State University CS 4491 Assigment 7
Kennesaw
State University
Department
of Computer Science
Advanced
Topic in Computer Science CS 4491/2
Assignment
# 7 / Bed Company/ Maximize Factory
Dalibor
Labudovic
05/6/2013
Initial
Problem Statement:
1)A factory produces
three types of beds, A, B, and C. The company that owns the factory
sells beds of type A for $250.00 each, beds of type B for $320.00
each, and beds of type C for $625.00 each. management estimates that
all beds produced of type A and C will be sold. The number of beds of
type B that can be sold is at the most 45. The production of
different types of bed require a different amount of resources such
as: basic labor hours, specialized hours, and materials. The
following table provides this data:
Type
A
|
Type
B
|
Type
C
|
Resources
|
10ft.
|
60ft.
|
80ft.
|
Material
|
15h
|
20h
|
40h
|
Basic
Labor
|
5h
|
15h
|
20h
|
Specialized
Labor
|
The amount of
resources available are: 450ft. Of material, 210 hours of basic
labor, and 95 hours of specialized labor. The problem is to optimize
profit. Write the formulation of the mathematical optimization
problem. Use LP_solver and GLPK glpsol to find a numerical solution
to the linear optimization problem.
2) A factory
manufactures 5 different products: P1, P2, P3, P4, and P5. The
factory needs to maximize profit. Each product requires machine time
on three different devices. A, B, and C, each of which is available
135 hours per week. The following table provides the data:
Product
|
Device
A
|
Device
B
|
Device
C
|
P1
|
20
|
15
|
8
|
P2
|
13
|
17
|
12
|
P3
|
15
|
7
|
11
|
P4
|
16
|
4
|
7
|
P5
|
18
|
14
|
6
|
The unit sales price
for products P1, P2, and P3 is $7.50, $6.00, and $8.25 respectively.
The first 26 units of P4 and P5 have a sale prices $5.85 each, all
excess units have a sale price of $4.50 each. The operations costs of
device A and B are $5.25 per hour. And $5.85 for device C. The cost
of materials for products P1 and P4 are $2.75. For products P2, P3,
and P5 the materials cost is $2.25. Hint: Assume that Xi, i=1...5 are
the number of unit produced of the various products and use two new
variables Y4 and Y5 for the units produced of P4 and P5 respectively
in excess of 26. Write the formulation of the mathematical
optimization problem. Use LP_solver and GLPK glpsol to find a
numerical solution to the linear optimization problem.
Summary
and purpose of the assignment activity:
The summary of the
assignment is to utilize an optimization mathematical formalization
for optimization and translate it into a simple program. The program
then is run through another program LP solver or GLPK glpsol to find
the numerical solution to the linear optimization problem.
The purpose of this
assignment activity is to utilize deep knowledge of mathematical and
invoke real world problem issue to resolve with the use of
computational programs.
Detail
description of the solution and used in the project:
The solution used in
this project is the use of mathematical linear optimization
formulation to devise a customized formula then translate it to the
computational model. The program lp solve or glpsol will then find a
numerical value.
1)
SOURCE
CODE
/* optim.lp */
Maximize: 250 x1 +
320 x2 + 625 x3;
10 x1 + 60 x2 + 80
x3 <= 450;
15 x1 + 20 x2 + 40
x3 <= 210;
05 x1 + 15 x2 + 20
x3 <= 95;
x1 >= 0;
x2 >= 0;
x3 >= 0;
x2 <= 45;
2.) SOURCE
CODE
/* Function objective : total profits */
max: 7.50p1 + 6.00p2 + 8.25p3 + 5.85p4i + 4.50p4 + 5.85p5i + 4.50p5
-2.75p1 - 2.25p2 - 2.25p3 - 2.75p4i - 2.75p4 - 2.25p5i - 2.25p5 -
5.25a - 5.25b - 5.85c;
/*constraints */
20a + 15b + 8c <= 135; /* P1 */
13a + 17b + 12c <= 135; /* P2 */
15a + 7b + 11c <= 135; /* P3 */
16a + 4b + 7c <= 135; /* P4 */
18a + 14b + 6c <= 135; /* P5 */
p4i<= 26; /* first 26 products at $5.85 constraint */
p5i<= 26; /* first 26 products at $5.85 constraint */
p4 > 27;
p5 > 27;
a + b + c <= 135;
bin p1, p2, p3, p4i, p4, p5i, p5;
int a, b, c;
#optim_sales.mod
#Using GLPK glpsol
/*Decision Variables */
var p1 >= 0;
var p2 >= 0;
var p3 >= 0;
var p4 >= 0;
var p4i >= 0;
var p5i >= 0;
var p5 >= 0;
var a >= 0;
var b >= 0;
var c >= 0;
/*Objective Function */
maximize z: 7.50 * p1 + 6.00 * p2 + 8.25 * p3 + 5.85 * p4i + 4.50 *
p4 + 5.85 * p5i + 4.50 * p5 - 2.75 * p1 - 2.25 * p2 - 2.25 * p3 -
2.75 * p4i - 2.75 * p4 - 2.25 * p5i - 2.25 * p5 - 5.25 * a - 5.25 * b
- 5.85 * c;
/* Constraints */
s.t. R1:20 * a + 15 * b + 8 * c <= 135;
s.t. R2:13 * a + 17 * b + 12 * c <= 135;
s.t. R3:15 * a + 7 * b + 11 * c <= 135;
s.t. R4:16 * a + 4 * b + 7 * c <= 135;
s.t. R5:18 * a + 14 * b + 6 * c <= 135;
s.t. R6:p4i < 27;
s.t. R7:p5i < 27;
s.t. R8:p4 > 26;
s.t. R9:p5 > 26;
s.t. R10: a + b + c <= 135;
bin p1, p2, p3, p4i, p4, p5i, p5;
int a, b, c;
end;
Table
of results:
1)LP
Solver
Value of objective
function: 3500
Actual values of the
variables:
x1
14
x2
0
x3
0
GLPK
GLPK 4.45 -
SENSITIVITY ANALYSIS REPORT
Page 1
Problem: optim
Objective: z = 3500
(MAXimum)
No. Row name
St Activity Slack Lower bound Activity Obj
coef Obj value at Limiting
Marginal
Upper bound range range break point variable
------ ------------
-- ------------- ------------- ------------- -------------
------------- ------------- ------------
1 z
BS 3500.00000 -3500.00000 -Inf 3343.75000
-1.00000 . x3
.
+Inf 3500.00000 +Inf +Inf
2 R1
BS 140.00000 310.00000 -Inf .
-25.00000 . R2
.
450.00000 280.00000 .28571 3540.00000 x2
3 R2
NU 210.00000 . -Inf .
-16.66667 . x1
16.66667
210.00000 285.00000 +Inf 4750.00000 R3
4 R3
BS 70.00000 25.00000 -Inf .
-50.00000 . R2
.
95.00000 125.35714 1.60000 3612.00000 x2
5 R4
BS . 45.00000 -Inf .
-Inf 3500.00000
.
45.00000 3.00000 13.33333 3500.00000 x2
GLPK 4.45 -
SENSITIVITY ANALYSIS REPORT
Page 2
Problem: optim
Objective: z = 3500
(MAXimum)
No. Column name
St Activity Obj coef Lower bound Activity Obj
coef Obj value at Limiting
Marginal
Upper bound range range break point variable
------ ------------
-- ------------- ------------- ------------- -------------
------------- ------------- ------------
1 x1
BS 14.00000 250.00000 . 10.00000
240.00000 3360.00000 x2
.
+Inf 14.00000 +Inf +Inf
2 x2
NL . 320.00000 . -Inf
-Inf +Inf
-13.33333
+Inf 3.00000 333.33333 3460.00000 R3
3 x3
NL . 625.00000 . -Inf
-Inf +Inf
-41.66667
+Inf 3.75000 666.66667 3343.75000 R3
End of report
2)
LP Solver
Value of objective
function: 25.2
Actual values of the
variables:
p1
1
p2
1
p3
1
p4i
1
p4
1
p5i
1
p5
1
a
0
b
0
c
0
Comments
and Conclusion:
In conclusion this
assignment activity was real well thought out and very difficult to
understand and process but this type of assignment will provide me
with the knowledge and skills to better my overall understanding of
computational model and computational processing. The principles and
guides line I learned in this project will be a useful still not only
in C programming but also scientific computing.
Script:
1.)
script started on
Tue 23 Apr 2013 01:56:48 PM EDT
#]0;dlabudovic@ubuntu:
~/Documents/CS4491/assign_07/P1#dlabudovic@ubuntu:~/Documents/CS4491/assign_07/P1$
lp_solve s##[KS##[K-S4 potim.l##[K##[K##[K##[K##[K##[K##[Koptim.lp
Value of objective
function: 3500
Actual values of the
variables:
x1
14
x2
0
x3
0
Actual values of the
constraints:
R1
140
R2
210
R3
70
Objective function
limits:
From
Till FromValue
x1
240 1e+30 -1e+30
x2
-1e+30 333.3333 3
x3
-1e+30 666.6667 3.75
Dual values with
from - till limits:
Dual
value From Till
R1
0 -1e+30 1e+30
R2
16.66667 0 285
R3
0 -1e+30 1e+30
x1
0 -1e+30 1e+30
x2
-13.33333 -1e+30 3
x3
-41.66667 -1e+30 3.75
#]0;dlabudovic@ubuntu:
~/Documents/CS4491/assign_07/P1#dlabudovic@ubuntu:~/Documents/CS4491/assign_07/P1$
exit
exit
Script done on Tue
23 Apr 2013 01:57:11 PM EDT
2.)
Script started on
Sun 05 May 2013 10:56:38 PM EDT
#]0;dlabudovic@ubuntu:
~/Documents/CS4491/assign_07/P2#dlabudovic@ubuntu:~/Documents/CS4491/assign_07/P2$
nano optim_sales.mod####################glpsol --model
optim_sales.mod -o
optim_sales.sol##################################################[29Pnano
optim_sales.mod####################glpsol --model optim_sales.mod -o
optim_sales.sol
GLPSOL: GLPK LP/MIP
Solver, v4.45
Parameter(s)
specified in the command line:
--model
optim_sales.mod -o optim_sales.sol
Reading model
section from optim_sales.mod...
optim_sales.mod:25:
strict inequality not allowed
Context: ...; s.t.
R5 : 18 * a + 14 * b + 6 * c <= 135 ; s.t. R6 : p4i <
MathProg model
processing error
#]0;dlabudovic@ubuntu:
~/Documents/CS4491/assign_07/P2#dlabudovic@ubuntu:~/Documents/CS4491/assign_07/P2$
lp_solve optim_sales.lp
Value of objective
function: 25.2
Actual values of the
variables:
p1
1
p2
1
p3
1
p4i
1
p4
1
p5i
1
p5
1
a
0
b
0
c
0
#]0;dlabudovic@ubuntu:
~/Documents/CS4491/assign_07/P2#dlabudovic@ubuntu:~/Documents/CS4491/assign_07/P2$
exit
exit
Script done on Sun
05 May 2013 10:58:09 PM EDT
Comments
Post a Comment